A noncompact Choquet theorem
نویسندگان
چکیده
منابع مشابه
Bayes' Theorem for Choquet Capacities
We give an upper bound for the posterior probability of a measurable set A when the prior lies in a class of probability measures 9. The bound is a rational function of two Choquet integrals. If g; is weakly compact and is closed with respect to majorization, then the bound is sharp if and only if the upper prior probability is 2-alternating. The result is used to compute-bounds for several set...
متن کاملBerge’s Theorem for Noncompact Image Sets
For an upper semi-continuous set-valued mapping from one topological space to another and for a lower semi-continuous function defined on the product of these spaces, Berge’s theorem states lower semi-continuity of the minimum of this function taken over the image sets. It assumes that the image sets are compact. For Hausdorff topological spaces, this paper extends Berge’s theorem to set-valued...
متن کاملOn a Choquet Theorem for Random Upper Semicontinuous Functions
We extend some topologies on the space of upper semicontinuous functions with compact support to those on that of general upper semicontinuous functions and see that graphical topology and modified L topology are the same. We then define random upper semicontinuous functions using their topological Borel field and finally give a Choquet theorem for random upper semicontinuous functions.
متن کاملOn intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملVanishing Theorem for Irreducible Symmetric Spaces of Noncompact Type
We prove the following vanishing theorem. Let M be an irreducible symmetric space of noncompact type whose dimension exceeds 2 and M 6= SO0(2, 2)/SO(2)×SO(2). Let π : E → M be any vector bundle, Then any E−valued L harmonic 1-form over M vanishes. In particular we get the vanishing theorem for harmonic maps from irreducible symmetric spaces of noncompact type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1975
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1975-0372586-2